Herausforderung
Der Kunde betreibt über 10.000 Filialen im Groß- und Einzelhandel. Genaue Prognosen der Absatzmengen des gesamten Produktsortiments der einzelnen Filialen werden benötigt, um die Supply Chain und die damit verbundenen Planungsprozesse vom Einkauf über die Aktionsplanung bis hin zur Ressourcenplanung im Lager optimal zu gestalten.
Die große Vielfalt des Artikelsortiments eines Vollsortimenters im Einzel- und Großhandel birgt verschiedene Herausforderungen in der Erstellung verlässlicher Prognosen. Ein extrem unterschiedliches Absatzverhalten und variierende Absatzfrequenzen der einzelnen Sortimentsartikel erfordern eine Vielzahl an verschiedenen Methoden für eine verlässliche Prognose.
Eine besondere Schwierigkeit stellt die unterschiedliche Verkaufsfrequenz der einzelnen Artikel dar. Erschwerend kommt hinzu, dass viele Sortimentsartikel über variierende und zum Teil extrem kurze Verkaufshistorien verfügen, wie etwa neu eingeführte Artikel. Die aktuell genutzte „One-size-fits-all“-Lösung offenbart vor allem bei eher niedrig frequentierten Artikeln Probleme. Im Rahmen des Projekts sollte daher für zwei ausgewählte Filialen im Einzelhandel und zwei Warenhäuser im Großhandel evaluiert werden, ob durch den Einsatz von Machine Learning Verfahren, die bisher von SAP bereitgestellten, klassischen Prognosemethoden verbessert werden können.
Ansatz
Zur Verbesserung der bestehenden Prognosen wurde eine Vielzahl an Modellen auf das gesamte Artikelsortiment von je zwei Filialen des Groß- und Einzelhandels trainiert, um so das optimale Prognosemodell für jeden einzelnen Artikel zu identifizieren. Zusätzlich zu klassischen Einflussfaktoren wie Aktionszeiträumen, Ferien, Feiertagen und besonderen Verkaufsperioden (z.B. Vorweihnachtszeit) wurden die Modelle auch um Wettereinflüsse erweitert.
Ergebnis
Durch die Auswahl des richtigen Modells konnte der Prognosefehler für das gesamte Sortiment der Lager (Großhandel) im Durchschnitt um bis zu 4% im Vergleich zu einem SAP-Forecast verbessert werden. Auf Einzelartikelebene konnten, insbesondere im B2C-Geschäft des Einzelhandels, noch wesentlich deutlichere Verbesserungen erzielt werden. Hier konnte der durchschnittliche Vorhersagefehler um 6 – 9% verbessert werden. Die erkennbar verbesserten Prognosen helfen dem Kunden bei der besseren Planung der nachgelagerten Prozesse im Einkauf und der Logistik.